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Winslow’s method for the automatic generation of computation meshes is extended to adap- 
tively vary the zone sizes and orthogonality of grid lines in the resulting mesh. Through 
simple analysis and numerical examples, the adaptive mesh is shown to give significant 
increases in accuracy in the computation of singular problems. 

I. INTRODUCTION 

Winslow’s method [l] for the automatic generation of computation meshes is 
extended to give discretionary control of the variation of zone sizes and orthogonality 
of grid lines in the resulting mesh. The additional control is used to adapt the mesh to 
the problem to increase the accuracy of the result. 

Winslow formulates the zoning problem “as a potential problem with the mesh 
lines playing the role of equipotentials” [ 11. The formulation requires the solution of 
a nonlinear, Poisson-like equation to generate a mapping from a regular domain in a 
parameter space to an irregularly shaped domain in physical space. By connecting 
points in the physical space corresponding to discrete points in the parameter space, 
the physical domain can be covered with a computation mesh suitable for the 
solution of finite difference equations. 

Winslow’s method is widely used, especially for exterior flow problems. His 
method has received attention from Godunov and Prokopov [2], and from Thompson 
et aZ. [3] among others. Godunov devised an algorithm for generating meshes for 
initial boundary value problems, in which changes in the boundary data are reflected 
in changes in the mesh. Thompson developed a method for generating body-fitted 
coordinates in multiply connected domains. The popularity of these methods arises 
primarily from their usefulness in giving accurate, numerical representation of the 
boundary geometry. For example, when calculating flow past an airfoil, the geometry 
of the boundary is important and its accurate representation is essential to the 
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accuracy of the overall calculation. Thompson’s codes applying Winslow’s method 
make shaping the boundary convenient. 

If, however, resolution within the boundary layer in the airfoil problem were also 
important, or, as in the case of many flow problems, an embedded region with strong 
gradients were to develop, control of the spacing of the mesh far from the boundaries 
becomes as desirable as accurate representation of the geometry of the boundary. In 
reaction diffusion processes, in resistive magnetohydrodynamic flow, and in shocked 
flows, singular regions may develop far from the boundaries. For these, new methods 
must be developed which somehow adapt to the data in the interior as well as 
conform to the shape of the boundaries. 

Constructing adaptive mesh generators, those which alter themselves in response to 
changes in the data, is an area of current interest [4-10, 181. In many recent studies, 
adaptiveness results from inhomogeneous terms added to the potential equations. For 
example, terms may be added to control the spacing of zones to increase resolution in 
regions of strong gradients [5, 181. In others, zones are added to regions of the mesh 
to distribute the error equally [lo]. 

These studies have shown the value of adaptive zoning, and applications have 
shown the usefulness of mesh generators of Winslow’s type [ 11, 121. Toward the goal 
of devising a mesh generator appropriate for arbitrarily shaped domains which both 
maintains logical connectivity and adapts to the data, we have combined certain ideas 
of Winslow [ 11, Browne [ 131 ( w h o used a variational formulation of Winslow’s 
method similar to Belinskii et al. [21]), and Bartield [ 141 in a variational formulation 
similar to one developed independently by Yanenko et al. [ 191. 

The unifying idea is that a mesh generator can be formulated to optimize several 
measurable properties of the computation mesh simultaneously. Optimizing 
smoothness [ 11, orthogonality [ 141, and the variation in cell volumes together gives 
the interior control of the mesh needed for adaptive zoning. The discretion the user 
retains in determining the relative importance given to the optimization of each of 
these properties, or to other properties controlled in the same way, allows him to fit 
the adaptive mesh to the problem. 

It is the purpose of this paper to expand the description of the adaptive mesh 
generator contained in several earlier papers [20], and to present a number of 
numerical examples illustrating its application to singular problems. 

II. FORMULATION OF THE MESH GENERATOR 

For the solution of finite difference equations on a computation mesh, the data is 
typically stored in ordered arrays of numbers, ((i,j) in which the indices i = l,..., M, 
j = l,..., N, give not only the location of the data in computer memory, but also the 
physical relationship between the data at one vertex x(i, j) and another, x(i’, j’). For 
example, in a mesh of quadrilateral cells, the neighbors of x(i,j) are x(i + 1, j), 
x(i, j + l), x(i - 1, j), and x(i, j - 1). . 

In formulating the mesh generator problem mathematically, it is useful to view the 
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mesh, whose vertices are x(i,j), as the image of a mapping x(l, q) in which only the 
points corresponding to integer values of the natural coordinates r and r~ are realized. 
(Conversely, the image of a computation mesh of quadrilateral cells is a uniform, 
rectilinear mesh in (r, s) space with spacing A< = Ay = 1.) A mesh generator 
determines the mapping x(<, q). 

A useful observation is that the differential properties of the mapping determine the 
properties of the computation mesh. For example, [(ax/a<)’ + (8y/ao2] 1’2 along a 
level curve of r~ is related to mesh spacing between vertices with same index j. 
Similarly, the volume of computational cells is related to the Jacobian J of the 
mapping 

(1) 

and the orthogonality of the mesh is related to the scalar, VY . Vg, which is zero when 
conjugate lines of the mesh are orthogonal. 

Integrals over the computation mesh can be written which measure these properties 
of the mapping. The global smoothness of the mapping (the variation in mesh spacing 
along level curves of r and q) is measured by the integral 

I, = . [(VY)’ + (v?)*] dV. J D 

The orthogonality of the mapping is measured by 

1, = . (VY * Vq)Z dV, ! D 

or the volume weighted measure 

(2) 

(34 

z:, = . (V< * v$q2 J3 dV J D 

and the weighted volume variation is measured by 

I,= . wJdV, 
1 (4) 

D 

where w = w(x, y) is a given function. 
Of course, if a property can be measured, it can be controlled. The smoothest 

mapping can be obtained by minimizing I,, the most orthogonal mapping by 
minimizing Z;, and the mapping withspecified variation of J by minimizing I,. It is 
not possible, however, to minimize Z; or Z, separately, because the solutions to the 
corresponding minimization problems do not have unique solutions. 

For example, consider a weighted volume variation problem with w = 1 and a 
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solution x0(5; r~), y,(<, r~). Then w.Z = .Z, = const. From this solution, a one-parameter 
(t) family of solutions can be constructed such that 

where velocities and a Jacobian are defined by 

and 

Using Eqs. (5a)-(5d) below results in 

1 aJ au av --=-+-, 
J at 8x 8y 

Clearly, J(t) = Jo if the velocity field is incompressible, 

au au 
I G+ay=o. 

Since any potential flow is incompressible, a one-parameter family of solutions to the 
weighted volume variation problem with J(f) = J,, can be constructed. Where 
(u, v) = VW, and n^ is the unit normal to the boundary, v is given by the solution of 
the equation 

v2yl=o, 

with fi . VW = 0 on the boundary. (Similarly, orthogonal meshes can be folded to 
generate new orthogonal meshes.) 

Thus, to formulate minimization problems with unique solutions, the minimization 
of Z; or Z, is combined with Z, (which has a unique solution [3]) as in the penalty 
method [ 151. That is, the integral Z is minimized, where 

with A, > 0, Ai > 0. In Section IV, it is shown by calculation that numerical solutions 
which minimize Z are obtained for finite values of A, and 1;. 
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III. SOLUTION OF THE VARIATIONAL PROBLEM IN Two DIMENSIONS 

To derive the Euler equations for the variational problem formulated in the 
preceeding section, it is first convenient to interchange dependent and independent 
variables using the relations 

t, = + Y,IJ, 

ty = - x,,lJ, 

v, = - y,lJv 

and 

qy = + xl/J. 

After interchanging variables, the smoothness measure can be written 

(5a) 

(5b) 

(SC) 

(54 

.M .N 
I, = I ! & dr 

x:+x;+y:+yt, 

1 1 J ’ 

for which the corresponding Euler equations are 

( 
a aa aa -----_- 
ax at ax[ aqax, I( 

x:+x:+Y:+Yf, =O 
J ) 

3 

( a aa aa ------- 
ay x Ye art ay, I( 

x:+x:+u:+vf, =O 
J ) * 

(6) 

(74 

Performing the indicated differentiation and collecting coefficients of the highest 
derivatives yields the equations 

B(ax,, - vx,, + YX,,) - A(ay,, - 2j3yrv + yy,,) = 0, @aI 

-A (a-% - 2&J + YX,,) + C(ay,, - 2pysv + yyqtl) = 0, @b) 

where 

A =x~Y~+x,,Y,,, B=Y;+Y;, c=x;+x;, (9) 
and 

a = (xs, + y;)/J3, P = (x~x,, + Y, y,)/J3, y = (x; + y;)/J’. (10) 

Of course, when A2 - BC # 0, the Euler equations can be factored and the equations 
written in the form given by Winslow [ 11, 
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Factorization, however, is not possible in the composite Euler equations and so it will 
be useful later to have the equations in standard form 

and 
bslxtt + bszxt, + bs3X,, + a,, y,, + as2 y,, + as3 y,, = 0 (124 

where 

%I-% + aszxf, + a,,x,, + c,, y,, + cs2 y,, + es3 y,, = 0, 

a,, = -Act, 

asz = UP, 

as3 = -AY, 

b,, = Ba, c s1 = Ca, 

b,, = -2B/3, cs2 = -2cp, (13) 

bs, = BY, c,3 = cy. 

The measure of volume variation, after interchanging dependent and independent 
variables. can be written 

dt dy wJ2, 

for which the Euler equations are 

~J’-~~J(~,Y,--~,Y,)+~(J,Y,-J~Y,)~=~ 

and 

$J’-2[J(x,w,-x,w,)+w(x,J,‘-x,J,)]=O. 

Collecting coefficients of the highest derivatives yields the equations 

Wb”P,, + b”G%l + b”3%, + a,, yrr + av2 Y,, + av3 ytl,> = -J2 -f$ 

and 

(14) 

P> 

(15b) 

Pa) 

2w(a,,x,, + av2xf, + av3x,, + cv~ Y,, + Cvz Yr., + C,3 y,,) = -J2 $, (16b) 

where the coeffkients are given by 

a “l=-xqYt13 4, =Y;, C VI =x 
2 
?l’ 

a “z=x[Yq+xtlYl, b,, = -2~~ Y,, c,2 = --2xIx, 7 (17) 

a v2 = -XI Y,9 bv, =y:, C “3=x;. 
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Similarly, the orthogonality measure Zk can be written 

(18) 

for which the Euler equations are 

bo~%~ + bo2xt,, + bo3x,, + a,, yss + a,2 y,, + ao3 yq,, = o 

and 

(lga> 

aolx,, + %2X,, + %3X*, + co, y,, + co* yrl, + co3 y,, = 0, (lgb) 

with coefficients 

a,, =xqyt), b,, = xf,, co1 =Y:, 
U 02 =x{Yn+xqYp b,, = 2(2x,x, + Y, Y,), co2 = 2(x,x, + 2u, Y,,), (20) 

Uo, =x[Y{9 b,, =x;, co3 =y:. 

In general, the Euler equations are to be added together with coefftcients given by 

a = a, + ~“U” + +z,, 

b=b,+A,b,+A:,b,, (21) 

c=cs+~“c”+~:,co, 

where 1, and A:, are positive constants. 

IV. NUMERICAL SOLUTION 

To generate a mapping, finite difference approximations to the Euler equations are 
solved by iteration. Since (4, r,r) are continuous variables which take on integer values 
at the nodes of the computation mesh, they form a uniformly spaced, rectilinear grid 
in parameter space. The derivatives with respect to the independent variables are 
easily computed on this grid. Where each node of the mesh is labelled by the value of 
(r, n) at the node, namely (i,j), the value of the derivatives at the nodes are approx- 
imated by the difference equations 

XtN f(xi+l.j-Xi-l.j), 

x~ 21 fCxi,j+ 1 - xi,j- 119 

(22) 
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and the second derivatives by 

X Itl=t(xi+l,j+*~+xi-I,j-I-Xi+l,j-l-Xi-lj+l) 
(23) 

X =xi j+l rltt , - 2xi,j t x),j- 19 (24) 

and similarly for y. Algebraic equations at each node result from the substitution of 
the differences for derivatives. The system of equations is solved by a Jacobi iteration 
in which the values of xi,j and yi,j are treated as parameters. R, and R, are the 
residual errors defined by 

Rx = (R,), + WJ, + L(R,),~ 

R, = W, + WV, + UR,),. 
(25) 

where R s, R,, and R, are residuals of Eqs. (12), (16), and (19), respectively. Letting 
(2) be the iteration number, the values of xi!T I) and yl!T ‘) are calculated from the 
equations 

and 

where 

aR"' aR"' 
L=-2(a, +a,)=*, 
aYij IJ 

aR"' 
y= -2(c, t CJ. 
aYij 

Pa) 

Wb) 

(27) 

The iteration continues until Rlf' and R$" are everywhere less than the maximum 
allowed error. 

V. NUMERICAL EXAMPLES 

The effect of minimizing I, + &Z, rather than I, alone (Winslow’s mesh generator) 
is illustrated by a simple numerical example. With w given by 

w = [sin(27cx/X) sin(27ry/Y) t 1 t (l/u)], GW 
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FIG. 1. With r = 100, ,I, = 4, and periodic boundary conditions, minimizing I, + II, gives the mesh 
shown. 

where X and Y are the periodic lengths in x and y, and 20 + 1 (>I) is the ratio of the 
maximum to minimum value of the weight function and w positive everywhere. 
Meshes are generated with periodic boundary conditions for a sequence of A,, 
0 < A, < 16. With X= Y = 1, A4 = N = 50, and I, = 0, Winslow’s generator gives a 
uniform, rectilinear mesh. With u = 100 and 1, = 4, Winslow’s generator plus the 
volume modifier gives the mesh shown in Fig. 1. In the modified mesh, where w is 
large [(x, y) = (+,I)], the cells are small, and where w is small [(x, y) = i, $)I, the 
cells are large. 

The results with several values of A,, 0 < A, Q 16, are summarized in Fig. 2, where 
I,, I,, and the maximum and minimum cell volumes are plotted for a mesh with 

-8 
-7 2 
_ : 

GE 
-5 =-. 
-4 g 

-3’ 
-2 

! 

FIG. 2. The values of I,, I,, and the maximum and minimum cell volumes are plotted for various 
values of I,. Note that V,,,i, decreases less than V,,,,, increases from its value for A, = 0. 0, I,; n , I, ; 0, 
V max ; 09 V,i”~ 
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TABLE I 

I/J = 25125, o = 100 

0.00 1.74-3 1.74-3 1.00 
0.25 2.01-3 1.43-3 1.41 
0.5 2.28-3 1.30-3 1.75 
1.0 2.89-3 1.17-3 2.47 

2.0 4.36-3 1.06-3 4.11 
4.0 7.06-3 9.85-4 7.17 
8.0 8.60-3 9.40-4 9.15 

16.0 - 9.04-4 - 

c = 100, and M = N = 25. As 1, increases, I,, which measures the variance in wJ* 
over the mesh, decreases as the solution wJ* = const is approached. Correspondingly, 
the maximum cell volume increases and the minimum decreases, although the 
asymptotic value of the minimum seems to be reached for smaller values of A,, and 
the ratio Vmax/Vmin approaches the prescribed value dm as shown in Table I. 
However, I,, which measures the smoothness of the mapping, increases with 
increasing 2,. As expected, volume variation is obtained at the expense of 
smoothness. 

Similar control of the volume variation is obtained nearly independently of the 
direction of variation of w with respect to the principal directions. When w is given 
by 

w = sin(27rx/X) + 1 + (l/o), Wb) 

with I, = 2 and CJ = 100 the mesh shown in Fig. 3 results. The cell volumes vary only 
in the x direction, with a maximum volume equal to 2.94 (relative to the unweighted 
cell volume) and a minimum equal to 0.59 for a ratio of maximum to minimum equal 
to 4.98. (This is one third the prescribed ratio dm between maximum and 
minimum value.) When w is given by 

w = sin [47r(x + y)/(X + Y)] + 1 + (l/a), (28~) 

so that w varies along the diagonal of the mesh, the mesh shown in Fig. 4 results with 
I, = 2 and o = 100. The cell volumes vary along the diagonal of the mesh, with a 
maximum volume equal to 2.75 and a minimum equal to 0.62 for a ratio of 
maximum to minimum equal to 4.44. The 10% difference between this and the ratio 
above supports the conclusion that the ability to control volume is not strongly 
dependent on the direction of the gradient in w relative to the principal directions. We 
also note that, by direct measurement, the ratio of the minimum distance between 
vertices along the gradient of w in Fig. 3 to the corresponding distance (along the 
diagonal) in Fig. 4 is l/\/z, exactly the ratio one would obtain on a rectilinear mesh 
between the side and the diagonal. 
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FIGURE 3 

FIGURE 4 

FIGS. 3, 4. The responsiveness of the volume control is nearly inependent of the direction of the 
gradient of the weight function relative to the principal directions. The volume variation in Fig. 3, with 
w =1(x), is the same as in Fig. 4, with w =f(x + y). 
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FIGURE 5 

FIGURE 6 

FIGS. 5, 6. The maximum value of i, is influenced by the number of cells in the mesh. With 
1, = 16, a solution is obtained with the 99 x 99 mesh in Fig. 6, but not with the 25 x 25 mesh in Fig. 5. 
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FIGS. 7, 8. When I, + &,I: is minimized, the mesh is made more orthogonal. In Fig. 7 (left), L,, = 0; 
in Fig. 8 (right), A,, = 103. 

Finally, to determine how closely the computed ratio of cell volumes can be made 
to approach the prescribed value, I, is made as large as possible. Earlier it was 
shown that the solution to the minimization problem with A, -+ co is not unique. 
However, only numerical solutions can show how large 1, can be. With w given by 
Eq. (28a), M = N = 25, I, = 16, the mesh shown in Fig. 5 is obtained. The largest 
cells in the mesh are distorted. Not only that, but the iteration does not converge. The 
maximum volume fluctuates from cycle to cycle even though I,, I, and the minimum 
volume are nearly constant. With M = N= 99 and A, = 16, however, the solution 
shown in Fig. 6 is obtained. This time, the iteration converges. Since the difference 
between the two cases is the number of zones, the largest value of L, for which 
solutions can be obtained successfully is obviously influenced by numerical accuracy, 
but seems to be A,, < O(10). 

The effect of minimizing I, + 1hZL (Eqs. (16) and (18)) rather than I, alone is 
illustrated by the solutions depicted in Figs. 7-9. For LA = 0, a mesh has been 
generated with Winslow’s generator (Eq. (6)) with Dirichlet boundary conditions and 
is shown in Fig. 7. Because the boundaries are skew, the intersections of mesh lines 
are also skew. Increasing A, to 1000 results in the mesh shown in Fig. 8. The inter- 
sections of mesh lines appear to be more nearly orthogonal. That the mesh is 
increasingly orthogonal as 1, is increased is demonstrated by the results shown in 
Fig. 9, where the variation of ZA with $, is plotted. As & increases from 0 to 10,000, 

FIG. 9. Corresponding to the meshes shown in Figs. 7 and 8, f:, decreases as 1, increases. 
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FIGS. 10, 11. Increasing d, decreases the skewness of the mesh as shown by comparing Fig. 10 
(left) with L, = 0 with Fig. 11 (right) with A,, = 1. 

I, decreases from 4 to 0.006. Thus, the minimization appears to have the desired 
effect. 

When Z, + L,Z, + &ZA is minimized, increasing 2; from zero decreases the 
skewness of the mesh. With w given by Eq. (28c), M = N = 50, I, = 4, and LA = 0, 
the mesh shown in Fig. 10 is obtained. The largest zones are quite skew. When 
1, = 1, the mesh shown in Fig. 11 results. The skewness is considerably reduced. The 
maximum zone size is reduced, however, so that the decrease in skewness is accom- 
panied by a decrease in volume control. 

VI. THE ADAPTIVE MESH 

The mesh generator described above will now be made part of an algorithm to 
adapt a computation mesh dynamically to data generated by the solution of finite 
difference equations. Adapting the mesh will be shown to reduce numerical error 
when the resolution of gradients is improved. 

In developing the adaptive algorithm, it is useful to consider Burger’s equation in 
one dimension, 

au 2 

at+(“+q$-Kg=o, 

where K and I/ > 0 are constant. A steady solution to Burger’s equation is given by 

If = @,/2)W - g+ 17 
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where g- and g+ are written 

and 

g+= l+exp 
i 

u&c- vt> -’ 
K i * 

This solution corresponds to a progressing wave propagating in the positive x 
direction with speed V. 

The solution above is typical for a singular perturbation problem for, as K+ 0, it is 
nearly constant everywhere except in the small interval (Vt - tc/zq,) <x < (Vf + K/U,,). 

There, the derivative of u, written 

au u* &=-p+g-, (32) 

becomes large as K becomes small. In fact, all higher derivatives of u become very 
large, for 

i3"l.l 
p=O(K-"). 

There are obvious difftculties in treating problems of this type numerically, for the 
truncation error becomes very large as K -+ 0. Consider a typical finite-difference 
approximation to the derivative 

ih4 ( ) Uit I -ui-I 

ax = xl+, -ximl * 
(34) 

Where the mesh interval is written 

v = f(Xi+ 1 - Xi- I), (35) 

and a grid Reynolds number is defined by 

R,s l&V/K, (36) 

by substitution of the solution, Eq. (30) into Eq. (34), we find 

(37) 

However, the correct value from Eq. (33) for au/ax scales as R,. Thus, the relative 
error E in the approximation of the derivative becomes large, 

lim (8) = lim 
R&.-W R,+m (@-:)/(:)=-" (38) 
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The cause is obvious. The narrow region where (&/8x) is large is not resolved by a 
uniform mesh when R, % 1. 

In contrast, the error on an adaptive mesh generated by minimizing the weighted 
volume variation with w chosen to resolve gradients of u, 

(39) 

scales differently. In one dimension, since J= xI minimizing the integral I, of 
Eq. (14) minimizes xI where au/ax is large, the resolution of the singular region is 
improved. 

The effect of varying xl on the truncation error is estimated by repeating the 
analysis above. The mesh spacing is given by 

au 2 
( ) 
z x; = c(u + z&J*. (40) 

The constant of integration c, is determined by the number N of mesh points in the 
computational domain, -X < x < X, which is given by 

N= (41) 

The integral is everywhere positive, and for u,X B K is given by 

N z l/G. (42) 

At the symmetry point where u = 0, xL is given by 

x1 = ~K/u,,N. (43) 

For a nonuniform mesh, the truncation error (which is estimated by substituting the 
correct solution into the difference equation and expanding about u(xI)) can be 
written 

0 ( %+I - Uf-I au 
aX ‘= x~+~-x~-, 

-_ 
ax ) I i a2u (v + 612 - (v - 612 i a3u (v t 6j3 t (v - 613 -- 

= 2ax2 2v +Tax’ 2v 

+ .,. + 1 anu (vw-w-w +... , 
d axn 2v i 

(44) 

where 
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The derivatives can be evaluated from the recursion relation which the steady 
solution to Burger’s equation in the wave frame satisfies 

a2u u au ----. 
aX2 - K &C 

By differentiation, one finds that 

a3 - = O(K"), 
acn 

n odd, 

a5 
- 0, ay"- 

Thus it will not alter the scaling of the truncation error if the substitution 

x;-l _ (V + w - L-F -@“I - 
2v 

(45) 

(46) 

is made. With this approximation, the truncation error at the point of symmetry is 
given by 

In contrast to the relative error for the nonadaptive grid, Eq. (39), the relative error 
for the adaptive grid does not increase as K -+ 0. 

The conclusion one can draw from this simple example is that, by the proper 
choice of volume weight function, the effect of the singular nature of the solution on 
numerical truncation error can be mitigated. That this is true in two dimensions as 
well will now be shown. 

In extending the adaptive mesh to two dimensions, a heuristic approach is taken. It 
is first shown that the two-dimensional adaptive mesh reduces to the apropriate one- 
dimensional limit for a one-dimensional problem. Next, the results of a computation 
in two dimensions are presented which illustrate the increase in accuracy obtained 
with an adaptive mesh. 

First, consider a problem in two dimensions where w is given by 

w = (fr’ V#)‘, (48) 

where 4 > 0 everywhere. With x and y the independent variables, the Euler equations 
for the mesh can be written 

0 = - &J’b 0 = -g (wJ2). 
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When x, = y, = 0, and all derivatives of $ in y are zero, it follows that 

aJ=o=x’J’I - l 
8Y 

- - 7 (4 Y,,). J (50) 

That is”, the mesh spacing is constant in y. Thus, the mesh spacing in x must vary as 
in the one-dimensional case, 

1 ag ( ) = -- x; = -5 = c. 
48x Y5, 

(51) 

For other directions of shock propagation, the equations will also reduce because the 
variational principle is invariant under rotation. In general, J will vary most strongly 
in the direction Vd//( so that the number of mesh points is increased in the direction 
of greatest variation of the data. 

The following example illustrates the application of the adaptive mesh to a singular 
perturbation problem. Consider the convection, diffusion equation 

$t+v*Qu-KV.V~=O, (52) 

where U = iV(r) is given and K > 0. On an infinite domain, stationary solutions 
result when 

U$+-KV@=o. (53) 

In solving this equation numerically, errors in representing V4/# usually result in 
solutions corresponding to K' > K. That is, the numerical solutions correspond to a 
larger diffusivity than the one intended because of numerical error. Thus, the 
maximum error 

measures how closely the numerical solution approaches the correct one. In the 
following discussion, the effect of adapting the mesh on the error E will be shown. 

When U(r) is given by 

U(r) = - rUihth-/lc, (55) 

where 
*U,(r- t-0) -’ 

I 
7 

K 

the steady solution to the convection diffusion equation can be written 

srht -LlnE( =o) 
K U, htr * 

(56) 

(57) 

501/46/3-3 
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The solution is of the same form as that for Burger’s equation but for the corrections 
for cylindrical geometry, and a similar singularity in 4 develops in an annulus at 
r = r. as rc -i 0. 

The singular behavior of d is treated similarly to Burger’s equation in one 
dimension. 

To measure the decrease in E resulting from adapting the mesh, the following 
experiment is performed. On a computation mesh with vertices (x,, yij) i = 1, M; 
j = 1, N, 4 is evaluated at the center of each cell. Using 4, the weight function is 
calculated from the equation 

where the difference equations are in the form sometimes used in Lagrangian fluid 
codes [22,23], 

1 a$ -- ( ) 4 ax ,,=[Oi-l,j(Yij+l-Yij-~)+4i-~j-~(Yi-~j-Yij-~) 
V 

+ #ij-l(Ytj-I -Yi+ij) + #ij(Yi+lj-Yij+l)Il~~ (59) 

and 

1 a4 ( ) - =-[4i-lj(xij+I-xij-I)+~i-lj-I(xi-lj-Xij-I) 
d aY ij 

+ dij-l(xij-l -xi+ij) + 4ij(Xi+Ij-Xijt1)1/6~ (60) 

where 4 is given by 

i= l#i-lj[(xijtl +xij)(Yi-lj-Yij)- (xi-Ij-xij)(Yij+I -Yij)] 

+ 4i-lj-1[(xi-Lj-xij)(Yij-l -Yij)- (xij-l -xij)(Yij-l -Yij)] 

+ bij-l[(xij-l -xij)(Yi+lj-Yij)- (xi+Ij-xij)(Yij-l -Yij)] 

+~ij~~xitlj~xij)~Yij+l~Yij)~~xijt~~xij)~Yi+~j~Yij)}~ (61) 

Although it is peripheral to the discussion, it must be noted that it is useful to 
prepare w for the calculation by smoothing and scaling it as follows. Because the 
difference equation above “roughens” the data causing the adaptive mesh to respond 
to spurious changes in w on the scale of one cell width, the smoothing equation 

)+$t 1) 
lJ - t+(j) = v{ (w;‘:ij + Ivy+, + w;[l, + Iv;/“- ,)/4 - Iv:;‘}, (62) 

is solved two or three times. To provide external control of the range of variation, wij 
is scaled as follows. So that comparable adjustments of the vertex positions produce 
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FIGURE 12 

FIGURE 13 

FIGS. 12 and 13. Using the volume control, the mesh shown in (12) has been adapted to increase 
the resolution of a function whose contours, shown in (13), indicate rapid variation in a narrow annulus. 
The resolution in (12) is increased at the expense of increasing the size of the zones exterior to the 
annulus. 
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comparable changes in the value of I, and Z,, the contribution of each cell to I, is 
made equal to one by scaling w’ in the limit A, + co such that 

wijJ; = 1. (63) 

The range of variation of w’ is determined by the lesser of the externally set value (T, 
and the ratio of the weight function 

u=min oO, 
. [ 

maxi,j(wij> 

I min,j(wij) * (64) 

So that the largest zone tits in the computational domain, the minimum value of w, q, 
must satisfy the equation 

q = min (w;) = min 
i j [ xii ;.z,,* ) i * I 

The scaled w’ is calculated from 

Wij = q 
[ 

ta2 - ‘1 wij + 1 1 maxij(wij) ’ (66) 

Using w&, the combined Euler equations (12), (16), and (19) are solved by moving 
the vertices. On the new mesh, dij is recalculated and the entire process above is 
repeated until the Euler equations are satisfied everywhere. 

The results of several numerical calculations on a square domain, 0 <x < 1, 
O~y~l,withr=Oatx=y=f,r,=~,andU,=l2areshowninFigs. 12andl3. 
The initial mesh is rectangular for a calculation with M = N = 50, and contours of d 
for K = 0.025 are shown in Fig. 13. Since closely spaced contours indicate rapid 
variation of 4, the contours indicate where a#/& is large, and thus where the cells 
must be small. In Fig. 12 an adapted mesh with Dirichlet boundary conditions is 
shown (A, = 2 and u0 = 100). The zones in Fig. 12 are clearly smaller where the 
contours are closely spaced in Fig. 13. 

The most important result is shown in Fig. 14 where the variation of I,, I, and E 
with L, is shown. 

FIG. 14. Minimizing I, minimizes the numerical error. 
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GRID (REYNOLDS NUMBER) 

FIG. 15. As the resolution increases, the error for both adaptive (0) and nonadaptive (0) meshes 
decreases. With the adaptive mesh, however, when the average mesh spacing equals the smallest gradient 
length (R, = 1), the error is about 596, one-sixth the value obtained with the nonadaptive mesh. 

Clearly, minimizing I, reduces the error since both I, and E decrease together as 1, 
increases. The decrease in I, results in an increase in I, corresponding to increasing 
departure from Winslow’s mesh: although both I, and I, change less rapidly for 
A, > 1. The decrease in E as LV increases from 0 to 1 is dramatic: from 25 to 3.5%. 

(The subsequent decrease in E with increasing A, is small by comparison. The 
conclusion is that with A, = O(1) (much less than the maximum possible value) 
substantial increases in accuracy are obtained. 

The effect of varying M and N is shown in Fig. 15. With K = 0.025, A, = 3, 
u,, = 100, as M x N increases from 15 x 15 to 99 x 99, R, decreases from 2 to 0.4. 
The upper curve corresponds to E for a nonadaptive mesh, the lower to an adaptive 
mesh. For R, < 1, E for the adaptive mesh is less than 5%, as little as one-tenth the 
error in the nonadaptive mesh. 

The error scaling with the nonadaptive mesh is shown in Fig. 16, where 
sR,/(sinh(R,) -R,) is plotted corresponding to rc = 0.05. The scaling is as predicted 

I I I I I 
0.0 0.5 1.0 1.5 20 

Re( GRID REYNOLDS NUMBER) 

FIG. 16. The scaling of the error for adaptive (0) and nonadaptive (0) meshes is compared with the 
results of error analysis. For both cases, when R, < 1, the convergence with decreasing R, is quadratic. 
Adaptive mesh, E/R: ; nonadaptive mesh, eR,/(sinh(R,) - R,). 
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FIGURE 17 

FIGURE 18 
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FIGURE 19 

FIGURE 20 

FIGS. 17-20. The effect of decreasing skewness on the adaptive mesh shown in Fig. 17 is examined. 
With orthogonality only at the boundary, Fig. 18 results. Minimizing Z, (Eq. (3a)) results in Fig. 19, 
and minimizing ZA (Eq. (3b)) results in Fig. 20. Only in the case of Fig. 19 does decreasing skewness 
interfere with adaptivity. 
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for R, < 1, which essentially means E = O(Ra) for small R,. For the adaptive mesh, 
EN* for K = 0.025 also is plotted in Fig. 16. The scaling is approximate, but seems to 
agree with numerical results. The point is, of course, that R: = aN* for constant K, 
and thus the convergence of E to zero with l/N for both adaptive and nonadaptive 
meshes is quadratic for R, < 1. That the scaling is similar suggests that the increased 
resolution in the singular region reduces the error, but does not give the change in 
scaling predicted by Eq. (47). 

Finally, the effect of simultaneously minimizing I, (Eq. (3)) and I, is examined. In 
Figs. 17-20, four meshes, all with M = N = 50, co = 100, A, = 2 and rc = 0.025, with 
Jo = 0 and Dirichlet boundary conditions in Fig. 17, with & = 0 and orthogonal 
boundary conditions in Fig. 18, with A,, = 1 and minimizing I, (Eq. (3a)) in Fig. 19, 
and with I, = 1 and minimizing Z; (Eq. (3b)) in Fig. 20. 

First, we can make some comments on the meshes themselves. Comparing 
Figs. 17 and 18, the orthogonal boundary conditions appear to reduce the skewness 
of the cells in the corners of the mesh without affecting the interior. Comparing 
Figs. 19 and 20 indicates that the volume weighted orthogonality minimization (ZA) 
affects corner cells and the interior, but not the cells in the singular region. By 
contrast, the minimization of I, significantly reduces the skewness of the small cells 
in the singular region. Because of this, we may expect minimization of I, to compete 
more than ZA with the minimization of Z,. 

Evidence of the competition is shown in Fig. 21, where I, and E are plotted against 
1, when minimizing Z, and Z;. When I, is minimized, both E and I, increase with L,, . 
In the case of E, the increase is nearly 100%. When ZA is minimized, Z, increases 
somewhat, but the increase in E is small (-5%). Evidently, minimizing ZA is more 
compatible with the adaptive algorithm than minimizing I,. 

We must note, however, that minimizing Z, or ZA and I, simultaneously does not 
yield an orthogonal mesh. Effective volume control (with the contraint that connec- 
tively be preserved) seems to introduce some skewness. Eliminating the skewness 
results in less effective volume control. On the other hand, reducing skewness by 
orthogonal boundary conditions as shown in Figs. 17 and 18 actually increases the 
error by our measure from 7.5% (denoted by an x in Fig. 21) to 9.6%. 

VII. CONCLUSION 

This description of work on adaptive meshes is necessarily incomplete. Among the 
areas not covered, but where there are results, are the application of the adaptive 
mesh to time-dependent problems [ 16, 171, and its extension to three dimensions and 
to non-Cartesian coordinates. 

There are also many unanswered mathematical questions. For example, is the 
difficulty in obtaining solutions for large A,, and A, mathematical or numerical in 
origin? For more complicated systems of equations, how can the choice of weight 
functions to minimize error be tested a priori? 
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FIG. 21. When I; is minimized, the value of I, does not change indicating compatibility. When I, is 
minimized, however, I, increases. Thus Thus, ZA is suitable for decreasing the skewness of adaptive 
meshes, but 1, is not. Minimize I, : A, error; A, I,. Minimize Zi : 0, error; 0, I,. 

In spite of all the areas not discussed, a systematic method for measuring desirable 
mesh properties using several integral measures has been presented. By forming a 
variational principle using linear combinations of the integral measures, a system of 
partial differential equations was derived. These equations were solved numerically 
using a relaxation algorithm. The effect of each term in the variational principle on 
the mesh has been demonstrated. The ability of the mesh technique to resolve singular 
problems in one and two dimensions was also shown, 
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